Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y(t) is solution of (t+1) (d y/d t)-t y=1, y(0)=-1, then y(1)=
Q. If
y
(
t
)
is solution of
(
t
+
1
)
d
t
d
y
−
t
y
=
1
,
y
(
0
)
=
−
1
, then
y
(
1
)
=
102
171
Differential Equations
Report Error
A
4
1
B
−
2
C
−
2
1
D
2
1
Solution:
d
t
d
y
−
t
+
1
t
y
=
t
+
1
1
I
.
F
=
e
−
∫
t
+
1
t
+
1
−
1
d
t
=
e
−
t
+
t
(
t
+
1
)
=
(
t
+
1
)
e
−
t
solution is
(
t
+
1
)
e
−
t
y
=
−
e
−
t
+
c
put
t
=
0
and
y
=
−
1
⇒
c
=
0
∴
2
e
−
1
y
=
−
e
−
1
put
t
=
1
y
=
−
2
1