Given, dtdy−(1+tt)y=(1+t)1 and y(0)=−1
Which represents linear differential equation of first order. ∴ IF =e∫−(1+tt)dt=e−t+log(1+t)=e−t⋅(1+t)
Required solution is, ye−t(1+t)=∫1+t1⋅e−t(1+t)dt+c=∫e−tdt+c ⇒ye−t(1+t)=−e−t+c
Since, y(0)=−1 ⇒−1⋅e0(1+0)=−e0+c c=0 ∴y=−(1+t)1⇒y(1)=−21