y=(tan)−1(secx−tanx) y=(tan)−1(cosx1−sinx) ⇒y=(tan)−1((cos)22x−(sin)22x)(cos2x−sin2x)2) ⇒y=(tan)−1(cos2x+sin2xcos2x−sin2x) ⇒y=(tan)−1(1+tan2x1−tan2x) ⇒y=(tan)−1(tan(4π−2x)) ⇒y=4π−2x
Differentiating with respect to x, we get ⇒dxdy=2−1=−0.5