Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=(sin x+cos x/sin x-cos x), then (dy/dx) at x = 0 is
Q. If
y
=
s
in
x
−
cos
x
s
in
x
+
cos
x
, then
d
x
d
y
at
x
=
0
is
3660
188
Limits and Derivatives
Report Error
A
−
2
42%
B
0
25%
C
2
1
20%
D
Does not exist
13%
Solution:
We have,
y
=
s
in
x
−
cos
x
s
in
x
+
cos
x
{
(
s
in
x
−
cos
x
)
d
x
d
(
s
in
x
+
cos
x
)
}
⇒
d
x
d
y
=
(
s
in
x
−
cos
x
)
2
−
(
s
in
x
+
cos
x
)
d
x
d
(
s
in
x
−
cos
x
)
=
(
s
in
x
−
cos
x
)
2
(
s
in
x
−
cos
x
)
(
cos
x
−
s
in
x
)
−
(
s
in
x
+
cos
x
)
(
cos
x
+
s
in
x
)
=
(
s
in
x
−
cos
x
)
2
−
s
i
n
2
x
−
co
s
2
x
+
2
s
in
x
cos
x
−
s
i
n
2
x
−
co
s
2
x
−
2
s
in
x
cos
x
=
(
s
in
x
−
cos
x
)
2
−
2
⇒
d
x
d
y
∣
∣
a
t
x
=
0
=
(
s
in
0
−
cos
0
)
2
−
2
=
(
0
−
1
)
2
−
2
=
−
2