Q.
If y=sin−1(x1−x+x1−x2)&dxdy=2x(1−x)1+p, then p=
287
118
Continuity and Differentiability
Report Error
Solution:
x=sinθ;x=sin2ϕ y=sin−1(sinθcosϕ+sinϕcosθ)=sin−1((sin(θ+ϕ))=θ+ϕ=sin−1x+sin−1x Dy=1−x21+2x(1−x)1 assuming x2+x≤1 i.e. 0≤x<25−1 ]
Note: sin−1(x1−y2+y1−x2) =sin−1x+sin−1y if x2+y2≤1=π−(sin−1x+sin−1y) if x2+y2≥1