264
164
Continuity and Differentiability
Report Error
Solution:
Given, y=sin−1(1+x22x)
Putting θ=tan−1x i.e., x=tanθ
Then, y=sin−1(1+tan2θ2tanθ)=sin−1(sin2θ)=2θ=2tan−1x (∵sin2θ=1+tan2θ2tanθ)
On differentiating both sides w.r.t. x, we get dxdy=dxd(2tan−1x) dxdy−2⋅1+x21−1+x22(∵dxdtan−1x−1+x21)