1538
230
AMUAMU 2016Continuity and Differentiability
Report Error
Solution:
We have, y=sec(tan−1x) =sec[sec−1(1+x2)] [∵tan−1θ=sec−1(1+θ2)] ⇒y=1+x2
On differentiating both sides w.r.t ‘x’, we get dxdy=21(1+x2)−1/2dxd)(1+x2) =211+x21⋅2x ⇒dxdy=(1+x2)x ⇒(dxdy)x=1=(1+x2)1 =21