Q.
If y=mx+5 is a tangent to x3y3=ax3+by3 at point (1,2), then the value of a is equal to
2831
222
NTA AbhyasNTA Abhyas 2020Application of Derivatives
Report Error
Solution:
P(1,2) lies on the curve and line, hence L→2=m+5⇒m=−3 Curve→8=a+8b
Also, dxdy at P(1,2) for the curve should be m=−3,
i.e. 3x2y3+x3.3y2y′=3ax2+3by2y′ ⇒24+12(−3)=3a+12b(−3) ⇒−12=3a−36b ⇒a−12b=−4 & a+8b=8 −20b=−12 ⇒b=53 and a=516