The equation of a tangent to y2=4kx is y=mx+k/m, where m is the slope of tangent.
If it touches the 2x2+2y2=k, then ∣∣1+m2k/m∣∣=2k ⇒m1+m2=2 ⇒m4+m2−2=0 ⇒(m2+2)(m2−1)=0 ⇒m=±1
Substituting these values in y=mx+mk,
the equation of common tangents are y=x+k and y=−x−k ∴m1=1,m2=−1
Now, m1m2=1×−1=−1