Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y= log sin x( tan x), then (d y/d x) at x=(π/4) is
Q. If
y
=
lo
g
s
i
n
x
(
tan
x
)
, then
d
x
d
y
at
x
=
4
π
is
444
169
Continuity and Differentiability
Report Error
A
l
o
g
2
4
22%
B
l
o
g
2
−
4
56%
C
l
o
g
2
1
11%
D
None of these
11%
Solution:
We have,
y
=
lo
g
s
i
n
x
(
tan
x
)
=
l
o
g
s
i
n
x
l
o
g
t
a
n
x
∴
d
x
d
y
=
(
l
o
g
s
i
n
x
)
2
l
o
g
s
i
n
x
⋅
t
a
n
x
1
⋅
s
e
c
2
x
−
l
o
g
t
a
n
x
×
s
i
n
x
1
c
o
s
x
At
x
=
4
π
(
d
x
d
y
)
x
−
4
π
=
[
l
o
g
(
2
1
)
]
2
(
l
o
g
2
1
)
(
2
)
2
=
l
o
g
(
2
1
)
(
2
)
2
=
l
o
g
2
−
2
×
2
=
l
o
g
2
−
4