Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = log ( log x) then (d2 y/dx2) is equal to
Q. If
y
=
lo
g
(
lo
g
x
)
then
d
x
2
d
2
y
is equal to
2566
234
KCET
KCET 2017
Continuity and Differentiability
Report Error
A
(
x
l
o
g
x
)
2
−
(
1
+
l
o
g
x
)
38%
B
x
2
l
o
g
x
−
(
1
+
l
o
g
x
2
)
20%
C
(
x
l
o
g
x
)
2
(
1
+
l
o
g
x
)
27%
D
x
2
l
o
g
x
(
1
+
l
o
g
x
2
)
15%
Solution:
We have,
y
=
lo
g
(
lo
g
x
)
d
x
d
y
=
l
o
g
x
1
⋅
x
1
=
x
l
o
g
x
1
=
(
x
lo
g
x
)
−
1
Again differentiating w.r.t.
x
, we get
d
x
2
d
2
y
=
−
(
x
lo
g
x
)
−
1
−
1
[
1
⋅
lo
g
x
+
x
⋅
x
1
]
=
−
(
x
lo
g
x
)
−
2
(
lo
g
x
+
1
)
=
(
x
l
o
g
x
)
2
−
(
1
+
l
o
g
x
)