Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = ( log cos x sin x )( lognx cos x) + sin-1 (2x/1+x2) , then (dy/dx) at x = (π/2) is equal to
Q. If
y
=
(
lo
g
c
o
s
x
sin
x
)
(
lo
g
n
x
cos
x
)
+
sin
−
1
1
+
x
2
2
x
,
then
d
x
d
y
at
x
=
2
π
is equal to
2744
239
Limits and Derivatives
Report Error
A
(
4
+
π
2
)
8
33%
B
0
26%
C
−
(
4
+
π
2
)
8
29%
D
1
12%
Solution:
y
=
(
lo
g
c
o
s
x
sin
x
)
(
lo
g
n
x
cos
x
)
+
sin
−
1
1
+
x
2
2
x
,
⇒
y
=
l
o
g
c
o
s
x
l
o
g
s
i
n
x
.
l
o
g
n
x
l
o
g
c
o
s
x
+
sin
−
1
1
+
x
2
2
x
⇒
y
=
l
o
g
n
x
l
o
g
s
i
n
x
+
sin
−
1
1
+
x
2
2
x
(
Let
u
=
l
o
g
n
x
l
o
g
s
i
n
x
,
v
=
sin
−
1
1
+
x
2
2
x
)
⇒
y
=
u
+
v
[
d
x
d
y
]
π
/2
=
[
d
x
d
u
]
π
/2
+
[
d
x
d
v
]
π
/2
+
....
(
1
)
u
=
l
o
g
n
x
l
o
g
s
i
n
x
⇒
d
x
d
u
=
(
l
o
g
n
x
)
2
(
l
o
g
n
x
)
c
o
t
x
−
x
.
l
o
g
s
i
n
x
∴
[
d
x
d
u
]
x
=
π
/2
=
0
v
=
sin
−
1
(
1
+
x
2
2
x
)
;
Let
x
=
tan
θ
∴
v
=
sin
−
1
(
sin
2
θ
)
=
2
θ
=
2
tan
−
1
x
∴
d
x
d
v
=
1
+
x
2
2
∴
[
d
x
d
v
]
x
=
(
π
/2
)
=
1
+
(
π
2
/4
)
2
=
π
2
/4
8
∴
d
x
d
y
at
(
x
=
2
π
)
=
π
2
+
4
8