1473
240
Continuity and Differentiability
Report Error
Solution:
Now, y=exx
Taking logarithms with base e, we get logey=logeexx logey=xx⋅logee=xx,{∵logee=1}.
Again taking logarithms with base e, we get, loge(logey)=logexx or loge(logey)=xlogex
Differentiating both sides with respect to x, we get logey1⋅y1⋅dxdy=1⋅logex+x⋅x1 or dxdy=ylogey⋅(logx+1) =exx⋅xx.(logex+1).=y⋅xx(1+logex)