Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=e sin -1(t2-1) x=e sec -1((1/t2-1)) then (d y/d x) is equal to
Q. If
y
=
e
s
i
n
−
1
(
t
2
−
1
)
&
x
=
e
s
e
c
−
1
(
t
2
−
1
1
)
then
d
x
d
y
is equal to
2802
221
KCET
KCET 2016
Continuity and Differentiability
Report Error
A
y
x
14%
B
x
−
y
46%
C
x
y
26%
D
y
−
x
14%
Solution:
We have,
y
=
e
s
i
n
−
1
(
t
2
−
1
)
and
x
=
e
s
e
c
−
1
(
t
2
−
1
1
)
Now,
x
y
=
e
s
i
n
−
1
(
t
2
−
1
)
⋅
e
s
e
c
−
1
(
t
2
−
1
1
)
⇒
x
y
=
e
s
i
n
−
1
(
t
2
−
1
)
+
c
o
s
−
1
(
t
2
−
1
)
[
∵
sec
−
1
(
t
2
−
1
1
)
=
cos
−
1
(
t
2
−
1
)
]
⇒
x
y
=
e
π
/2
[
∵
sin
−
1
θ
+
cos
−
1
θ
=
2
π
]
On differentiating both sides w.r.t.
x
, we get
x
d
x
d
y
+
y
=
0
⇒
d
x
d
y
=
x
y