Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y (d y/d x)=x[(y2/x2)+(φ((y2/x2))/φ prime((y2)x2))], x > 0, φ > 0, and y(1)=-1 then φ(( y 2/4)) is equal to :
Q. If
y
d
x
d
y
​
=
x
⎣
⎡
​
x
2
y
2
​
+
Ï•
′
(
x
2
y
2
​
)
Ï•
(
x
2
y
2
​
)
​
⎦
⎤
​
,
x
>
0
,
Ï•
>
0
, and
y
(
1
)
=
−
1
then
Ï•
(
4
y
2
​
)
is equal to :
4197
214
JEE Main
JEE Main 2021
Differential Equations
Report Error
A
4
Ï•
(
2
)
B
4
Ï•
(
1
)
C
2
Ï•
(
1
)
D
Ï•
(
1
)
Solution:
Let,
y
=
t
x
d
x
d
y
​
=
t
+
x
d
x
d
t
​
∴
t
x
(
t
+
x
d
x
d
t
​
)
=
x
(
t
2
+
φ
′
(
t
2
)
φ
(
t
2
)
​
)
t
2
+
x
t
d
x
d
t
​
=
t
2
+
φ
′
(
t
2
)
φ
(
t
2
)
​
∫
φ
(
t
2
)
t
φ
′
(
t
2
)
​
d
t
=
∫
x
d
x
​
Let
φ
(
t
2
)
=
p
∴
φ
′
(
t
2
)
2
t
d
t
=
d
p
⇒
∫
2
p
d
y
​
=
∫
x
d
x
​
2
1
​
â„“
n
φ
(
t
2
)
=
â„“
n
x
+
â„“
n
c
φ
(
t
2
)
=
x
2
k
φ
(
x
2
y
2
​
)
=
k
x
2
,
φ
(
1
)
=
k
φ
(
4
y
2
​
)
=
4
φ
(
1
)