Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=a log|x|+bx2+x has its extremum values at x=-1 and x=2 then find value of a+2b .
Q. If
y
=
a
lo
g
∣
x
∣
+
b
x
2
+
x
has its extremum values at
x
=
−
1
and
x
=
2
then find value of
a
+
2
b
.
945
166
NTA Abhyas
NTA Abhyas 2022
Report Error
Answer:
1
Solution:
d
x
d
y
=
x
a
+
2
b
x
+
1
or
d
x
d
y
=
0
at
x
=
−
1
,
2
−
1
a
+
2
b
(
−
1
)
+
1
=
0
or
−
a
−
2
b
+
1
=
0
2
a
+
4
b
+
1
=
0
or
a
+
8
b
+
2
=
0
solving we get
;
a
=
2
,
b
=
−
2
1
Hence,
a
+
2
b
=
1