Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=a\log\left|x\right|+bx^{2}+x$ has its extremum values at $x=-1$ and $x=2$ then find value of $a+2b$ .

NTA AbhyasNTA Abhyas 2022

Solution:

$\frac{d y}{d x}=\frac{a}{x}+2bx+1$ or $\frac{d y}{d x}=0$ at $x=-1,2$
$\frac{a}{- 1}+2b\left(- 1\right)+1=0$ or $-a-2b+1=0$
$\frac{a}{2}+4b+1=0$ or $a+8b+2=0$
solving we get $;a=2,b=-\frac{1}{2}$
Hence, $a+2b=1$