Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = aemx + be-mx, then (d2y/dx2) - m2 y is equal to
Q. If
y
=
a
e
m
x
+
b
e
−
m
x
, then
d
x
2
d
2
y
−
m
2
y
is equal to
2141
221
Limits and Derivatives
Report Error
A
m
2
(
a
e
m
x
−
b
e
−
m
x
)
B
1
C
0
D
none of these
Solution:
y
=
a
e
m
x
+
b
e
−
m
x
∴
d
x
d
y
=
am
e
m
x
−
mb
e
−
m
x
Again
d
x
2
d
2
y
=
a
m
2
e
m
x
+
m
2
b
e
−
m
x
=
m
2
(
a
e
m
x
+
b
e
−
m
x
)
=
m
2
y
or
d
x
2
d
2
y
−
m
2
y
=
0