6221
242
Continuity and Differentiability
Report Error
Solution:
Given, y=2x⋅32x−1
Differentiating w.r.t. x, we get dxdy=2x⋅dxd(32x−1)+(32x−1)+(32x−1)dxd(2x)…(i)
Let 32x−1=u ⇒logu=(2x−1)log3 ⇒dxdu=32x−1×2⋅log3 ∴ From (i), we have dxdy=2x⋅32x−1(2)log3+2x⋅32x−1log2 ⇒dxdy=2x⋅32x−1[2log3+log2] ⇒dxdy=ylog18