Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y2 = p(x), a polynomial of degree 3, then 2 (d/dx) (y3 (d2y/dx2)) is equal to
Q. If
y
2
=
p
(
x
)
,
a polynomial of degree 3, then
2
d
x
d
(
y
3
d
x
2
d
2
y
)
is equal to
2210
218
Limits and Derivatives
Report Error
A
p"'(x) + p' (x)
20%
B
p"(x) p'" (x)
35%
C
p(x) p"' (x)
30%
D
a constant
15%
Solution:
y
2
=
p
(
x
)
⇒
2
y
d
x
d
y
=
p
′
(
x
)
⇒
2
y
d
x
2
d
2
y
+
2
(
d
x
d
y
)
2
=
p
"
(
x
)
∴
2
y
d
x
3
d
3
y
+
2
d
x
d
y
.
d
x
2
d
2
y
+
4
d
x
d
y
.
d
x
2
d
2
y
=
p
′′′
(
x
)
⇒
2
y
y
3
+
6
y
1
y
2
=
p
′′′
(
x
)
Now
2
d
x
d
(
y
3
y
2
)
=
2
[
y
3
y
3
+
3
y
2
y
1
y
2
]
=
y
2
[
2
y
y
3
+
6
y
1
y
2
]
=
y
2
p
′′′
(
x
)
=
p
(
x
)
p
′′′
(
x
)