3349
226
Continuity and Differentiability
Report Error
Solution:
Given y2=ax2+bx+c
Differentiating both sides, we get 2yy1=2ax+b…(i)
Again differentiating, we get 2yy2+y1(2y1)=2a ⇒yy2=a−y12 ⇒yy2=a−(2y2ax+b)2 (using (i)) =4y24y2a−(4a2x2+b2+4abx) ⇒y3y2=44a(ax2+bx+c)−(4a2x2+b2+4abx) =44ac−b2 ⇒dxd(y3y2)=0