Given, y=(1+x)(1+x2)(1+x4)
On differentiating both sides w.r.t. x, we get dxdy=(1+x)(1+x2)dxd(1+x4) +(1+x)(1+x4)dxd(1+x2) +(1+x2)(1+x4)dxd(1+x) =(1+x)(1+x2)(4x3)+(1+x)(1+x4)(2x) +(1+x2)(1+x4)(1) ⇒(dxdy)(x=1)=(1+1)(1+12)(4×13) +(1+1)(1+14)(2×1)+(1+12)(1+14) =2×2×4+2×2×2+2×2 =16+8+4=28