Given,
y=(1+x)(1+x2)(1+x4)…(1+x2n)
Taking the logarithm on both side of above equation (1), we get: loge(y)=loge((1+x)(1+x2)(1+x4)…(1+x2n))loge(y)=loge(1+x)+loge(1+x2)+…+loge(1+x2n)
Differentiating equation (2) with respect to x, we get: dxd(loge(y))=dxd[loge(1+x)+loge(1+x2)+…+loge(1+x2n)] dxd(loge(y))=dxd(loge(1+x))+dxd(loge(1+x2))+…+dxd(loge(1+x2n)) y1dydxdx=1+x1+1+x21(2x)+…+1+x2n1(2nx2n−1)
From equation (1), we have:
At x=0,y=1.
Put x=0 in equation (3), we get: (dxdy)x=0=1
Alternative solution:
Multiply and divide by (1−x) y=(1−x)(1−x)(1+x)(1+x2)(1+x4)…(1+x2n) Use: (a+b)(a−b)=a2−b2 y=1−x1−x2n+1=1+x+x2+…+x2n+1−1, using Sum of first n terms of a G.P.: a(1−r1−rn)=a+ar+ar2+…+arn−1 dxdy=1+2x+3x2+…+(2n+1−1)x2n+1−2
At x=0,dxdy=1