Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = √((1+ cos 2θ/1 - cos 2θ)) , then (dy/dθ) at θ =(3π/4) is:
Q. If
y
=
(
1
−
c
o
s
2
θ
1
+
c
o
s
2
θ
)
, then
d
θ
d
y
at
θ
=
4
3
π
is:
3245
192
Continuity and Differentiability
Report Error
A
-2
17%
B
2
54%
C
±
12%
D
none of these
17%
Solution:
y
=
(
1
−
c
o
s
2
θ
1
+
c
o
s
2
θ
)
,
⇒
y
=
2
s
i
n
2
θ
2
c
o
s
2
θ
=
cot
2
θ
⇒
y
=
cot
θ
Differentiate w.r.t.
′
θ
′
, we get
d
θ
d
y
=
−
cose
c
2
θ
Now ,
(
d
θ
d
y
)
θ
=
4
3
π
=
−
cose
c
2
(
4
3
π
)
=
−
cose
c
2
(
π
−
4
π
)
=
−
cose
c
2
4
π
=
−
2
(
∵
sin
4
π
=
2
1
)