y41+y411=2x ⇒(y41)2−2xy(41)+1=0 ⇒y41=x+x2−1
or x−x2−1
So, 41y431dxdy=1+x2−1x ⇒41y3/41dxdy=x2−1y41 ⇒dxdy=x2−14y…(1)
Hence, dx2d2y=4x2−1(x2−1)y′−x2−1yx ⇒(x2−1)y′′=4x2−1(x2−1)y′−xy ⇒(x2−1)y′′=4(x2−1y′−x2−1xy) ⇒(x2−1)y′′=4(4y−4xy′)( from I) ⇒(x2−1)y′′+xy′−16y=0
So, ∣α−β∣=17