Q.
If y=(1+1/x)x, then (log3/2−1/3)2y2(2)+1/8 is equal to -
2497
198
Continuity and Differentiability
Report Error
Solution:
Let y=(1+x1)x
Taking logarithm of both sides, we get logy=x[log(1+x1)] ⇒y1y1(x)=x+1x2(−x21)+log(1+x1)=−x+11+log(1+x1).......(1)
Since, y(2)=(1+1/2)2=9/4
so, y1(2)=(9/4)(−31+loh23)
Again differentiate eq (1) w.r.t (x), we get (y(x))2y(x)y2(x)−[y1(x)]2=(1+x)21−x(x+1)1
By putting x=2, we get (y(2))2y(2)y2−(y1(2))2=18−1
Now, put value of y(2) and y1(2) ⇒y2(2)=(49)(−31+log23)2−81 4(y2(2)+81)=9(log23−31)2 ⇒ Required expression =3