Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x, y, z are in A.P., then the value of the determinant |a+2&a+3&a+2x a+3&a+4&a+2y a+4&a+5&a+2z| is
Q. If
x
,
y
,
z
are in A.P., then the value of the determinant
∣
∣
a
+
2
a
+
3
a
+
4
a
+
3
a
+
4
a
+
5
a
+
2
x
a
+
2
y
a
+
2
z
∣
∣
is
2199
202
Determinants
Report Error
A
1
B
0
C
2a
D
a
Solution:
As
x
,
y
,
z
are in A.P. Therefore,
x
+
z
−
2
y
=
0
Now,
∣
∣
a
+
2
a
+
3
a
+
4
a
+
3
a
+
4
a
+
5
a
+
2
x
a
+
2
y
a
+
2
z
∣
∣
∣
∣
0
a
+
3
a
+
4
0
a
+
4
a
+
5
2
(
x
+
z
−
2
y
)
a
+
2
y
a
+
2
z
∣
∣
[applying
R
1
→
R
1
+
R
3
−
2
R
2
]
∣
∣
0
a
+
3
a
+
4
0
a
+
4
a
+
5
0
a
+
2
y
a
+
2
z
∣
∣
[
∵
x
+
z
−
2
y
=
0
]
=
0