Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x, y. z are distinct real numbers and |x3+1&x2&x y3+1&y2&y z3+1&z2&z| = 0 then xyz is equal to
Q. If x, y. z are distinct real numbers and
∣
∣
x
3
+
1
y
3
+
1
z
3
+
1
x
2
y
2
z
2
x
y
z
∣
∣
=
0
then xyz is equal to
1949
226
Determinants
Report Error
A
1
31%
B
-1
20%
C
0
42%
D
none of these.
7%
Solution:
∣
∣
x
3
+
1
y
3
+
1
z
3
+
1
x
2
y
2
z
2
x
y
z
∣
∣
=
0
⇒
∣
∣
x
3
y
3
z
3
x
2
y
2
z
2
x
y
z
∣
∣
+
∣
∣
1
1
1
x
2
y
2
z
2
x
y
z
∣
∣
=
0
⇒
x
yz
∣
∣
x
2
y
2
z
2
x
y
z
1
1
1
∣
∣
+
∣
∣
x
2
y
2
z
2
x
y
z
1
1
1
∣
∣
=
0
⇒
x
yz
=
−
1
⎝
⎛
∵
∣
∣
x
2
y
2
z
2
x
y
z
1
1
1
∣
∣
=
−
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
⎠
⎞