Given ∣∣1+x−x01y−y10z∣∣=0
Expanding along R1, we get (1+x)[(1+y)(1+z)−1]−1(1+z−1)+1(1−1−y)=0 ⇒(1+x)(1+y)(1+z)−(1+x)−z−y=0 ⇒(1+x)(1+y)(1+z)=x+y+z+1 ⇒1+x+y+z+xy+yz+xz+xyz=x+y+z+1 ⇒xy+yz+xz=−xyz
On dividing both sides by xyz, we get z1+x1+y1=−1 ⇒x−1+y−1+z−1=−1