Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x, y, z and w are positive integers such that x+2 y+3 z +4 w=50, then maximum value of ((x2 y4 z3 w/16))1 / 10 is
Q. If
x
,
y
,
z
and
w
are positive integers such that
x
+
2
y
+
3
z
+
4
w
=
50
,
then maximum value of
(
16
x
2
y
4
z
3
w
)
1/10
is
1579
193
Sequences and Series
Report Error
A
4
B
5
C
6
D
7
Solution:
We have
x
+
2
y
+
3
z
+
4
w
=
50
Using the fact A.M.
≥
G.M., we get
2
+
4
+
3
+
1
2
(
2
x
)
+
4
(
2
y
)
+
3
(
1
z
)
+
1
(
1
4
w
)
=
10
50
≥
[
(
2
x
)
2
(
2
y
)
4
(
z
)
3
(
4
w
)
]
1/10
⇒
5
≥
[
(
2
2
x
2
)
(
2
4
y
4
)
(
z
)
3
(
2
2
w
)
]
1/10
⇒
5
≥
(
16
x
2
y
4
z
3
w
)
1/10