3568
247
Continuity and Differentiability
Report Error
Solution:
We have, x+y+y−x=a
Differentiating w.r.t. x, we get 2x+y1(1+dxdy)+2y−x1(dxdy−1)=0 ⇒x+y1−y−x1=−(x+y1+y−x1)dxdy ⇒(y−x+x+y)−(y−x−x+y)=dxdy ⇒dxdy=y−x+x+yx+y−y−x