Q.
If x,y(x=1) satisfy both the equation 2lnx=3lny and (ln2x)=(ln3y). The value of the expression lny+3lnx can be expressed as logba (where a,b∈N). Then find the smallest value of ∣a−b∣.
104
112
Continuity and Differentiability
Report Error
Answer: 7
Solution:
2lnx=3lny ....(1)
Taking ln both the sides lnx⋅ln2=lny⋅ln3⇒lnx=log23⋅lny
Put in eqaution ln2x=ln3y⇒lny=log223⇒lnx=log233⇒log23+log23=log29 ⇒a=9,b=2 ∣a−b∣=∣9−2∣=7