Q. If $x , y ( x \neq 1)$ satisfy both the equation $2^{\ln x }=3^{\ln y }$ and $\left(\ln ^2 x \right)=\left(\ln ^3 y \right)$. The value of the expression $\sqrt{\ln y }+\sqrt[3]{\ln x }$ can be expressed as $\log _{ b } a$ (where $\left.a , b \in N \right)$. Then find the smallest value of $|a-b|$.
Continuity and Differentiability
Solution: