The given determinant is ∣∣cosxsinxcos(x+y)−sinxcosx−sin(x+y)110∣∣
Applying R3→R3=cosyR1+sinyR2, we get Δ=∣∣cosxsinx0−sinxcosx011siny−cosy∣∣
By expanding along R3, we have Δ=(siny−cosy)(cos2x+sin2x) =(siny−cosy)=2[21siny−21cosy] =2[cos4πsiny−sin4πcosy]=2sin(y−4π)
Hence, −2≤Δ≤2