We have, xy=e(x−y) Taking log on both sides, we get ylogx=(x−y)loge ⇒ylogx=x−y ?.(i) On differentiating w. r. t. x, we get y.x1+logx.dxdy=1−dxdy ⇒dxdy(logx+1)=1−xy ⇒dxdy=(logx+1)xx−y ⇒dxdy=x(logx+1)x−logx+1x(fromEq.(i),y=logx+1x) ⇒dxdy=x(logx+1)2xlogx+x−x ⇒dxdy=x(logx+1)2xlogx ⇒dxdy=(1+logx)2logx