Given have, xy=θx−y
taking logon both sides, we get ylogx=(x−y)logθ=(x−y)...(i)
when x=1, then y(log1)=(1−y) ⇒y=1
On differentiating both sides, y(x1)+logx⋅dxdy=1−dxdy ⇒dxdy(logx+1)=1−xy ⇒dxdy(logx+1)=xx−y ⇒dxdy=x(logx+1)(x−y)
when x=1, then (dxdy)=x(log1+1)1−1=0