Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x, y and z are all distinct and |x&x2&1+x3 y&y2&1+y3 z&z2&1+z3| = 0 then the value of xyz is
Q. If
x
,
y
and
z
are all distinct and
∣
∣
x
y
z
x
2
y
2
z
2
1
+
x
3
1
+
y
3
1
+
z
3
∣
∣
=
0
then the value of
x
yz
is
1695
204
VITEEE
VITEEE 2012
Report Error
A
-2
0%
B
-1
33%
C
-3
67%
D
None of these
0%
Solution:
∣
∣
x
y
z
x
2
y
2
z
2
1
+
x
3
1
+
y
3
1
+
z
3
∣
∣
=
0
⇒
∣
∣
x
y
z
x
2
y
2
z
2
1
1
1
∣
∣
+
∣
∣
x
y
z
x
2
y
2
z
2
x
3
x
3
x
3
∣
∣
=
0
⇒
∣
∣
x
y
z
x
2
y
2
z
2
1
1
1
∣
∣
+
x
yz
∣
∣
1
1
1
x
y
z
x
2
y
2
z
2
∣
∣
=
0
⇒
(
1
+
x
yz
)
∣
∣
x
y
z
x
2
y
2
z
2
1
1
1
∣
∣
=
0
⇒
(
1
+
x
yz
)
[
x
(
y
2
−
z
2
)
−
y
(
x
2
−
z
2
)
+
z
(
x
2
−
y
2
)
]
=
0
⇒
(
1
+
x
yz
)
(
x
−
y
)
(
y
−
z
)
(
z
−
x
)
=
0
⇒
1
+
x
yz
=
0
⇒
x
yz
=
−
1