Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x+y=a, x × y=b and x ⋅ a=1, then
Q. If
x
+
y
=
a
,
x
×
y
=
b
and
x
⋅
a
=
1
, then
1517
203
Vector Algebra
Report Error
A
x
=
a
2
a
+
a
×
b
B
y
=
a
2
(
a
2
−
1
)
a
−
a
×
b
C
x
=
a
2
b
+
a
×
b
D
y
=
a
2
(
b
2
−
1
)
b
−
a
×
b
Solution:
Given
⇒
y
=
a
−
x
x
×
y
=
b
x
⋅
a
=
1
x
+
y
=
a
From (1) and (2), we get
x
×
(
a
−
x
)
=
b
⇒
x
×
a
−
x
×
x
=
b
⇒
x
×
a
=
b
⇒
a
×
(
x
×
a
)
=
a
×
b
⇒
(
a
⋅
a
)
x
−
(
a
⋅
x
)
a
=
a
×
b
⇒
∣
a
∣
2
x
−
1
⋅
a
=
a
×
b
[From (3)]
⇒
x
=
a
2
(
a
+
a
×
b
)
and
y
=
a
−
x
=
a
2
(
a
2
−
1
)
a
−
a
×
b