Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x+y=1, then displaystyle∑r=0n r2 ⋅ n Cr xr yn-r is equal to
Q. If
x
+
y
=
1
, then
r
=
0
∑
n
r
2
⋅
n
C
r
x
r
y
n
−
r
is equal to
2565
203
Manipal
Manipal 2011
Report Error
A
nxy
B
nx (x +yn)
C
nx (n x +y)
D
None of these
Solution:
r
=
0
∑
n
r
2
n
C
r
x
r
y
n
−
r
=
r
=
0
∑
n
[
r
(
r
−
1
)
+
r
]
n
C
r
x
r
y
n
−
r
=
r
=
0
∑
n
r
(
r
−
1
)
n
C
r
x
r
y
n
−
r
+
r
=
0
∑
n
r
n
C
r
x
r
y
n
−
r
=
r
=
2
∑
n
−
2
r
(
r
−
1
)
r
n
⋅
r
−
1
n
−
1
n
−
2
C
r
−
2
x
2
⋅
x
r
−
2
y
n
−
r
+
r
=
1
∑
n
r
⋅
r
n
n
−
1
C
r
−
1
x
⋅
x
r
−
1
y
n
−
r
=
n
(
n
−
1
)
x
2
r
=
2
∑
n
−
2
n
−
2
C
r
−
2
x
r
−
2
y
(
n
−
2
)
−
(
r
−
2
)
+
n
x
r
=
1
∑
n
n
−
1
C
r
−
1
x
r
−
1
y
(
n
−
1
)
−
(
r
−
1
)
=
n
(
n
−
1
)
x
2
(
x
+
y
)
n
−
2
+
n
x
(
x
+
y
)
n
−
1
=
n
(
n
−
1
)
x
2
+
n
x
(
∵
x
+
y
=
1
)
=
n
x
(
n
x
−
x
+
1
)
=
n
x
(
n
x
+
y
)
(
∵
x
+
y
=
1
)