Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x = x ( y ) is the solution of the differential equation y (d x/d y)=2 x+y3(y+1) ey, x(1)=0; then x(e) is equal to :
Q. If
x
=
x
(
y
)
is the solution of the differential equation
y
d
y
d
x
=
2
x
+
y
3
(
y
+
1
)
e
y
,
x
(
1
)
=
0
; then
x
(
e
)
is equal to :
1294
164
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
e
3
(
e
e
−
1
)
100%
B
e
e
(
e
3
−
1
)
0%
C
e
2
(
e
e
+
1
)
0%
D
e
e
(
e
2
−
1
)
0%
Solution:
y
d
y
d
x
=
2
x
+
y
3
(
y
+
1
)
e
y
,
x
(
1
)
=
0
d
y
d
x
−
y
2
x
=
y
2
(
y
+
1
)
e
y
I.f
=
e
∫
y
−
2
d
y
=
y
2
1
x
⋅
y
2
1
=
∫
(
y
+
1
)
e
y
d
y
y
2
x
=
(
y
+
1
)
e
y
−
e
y
+
c
=
y
⋅
e
y
+
c
x
=
y
3
e
y
+
c
y
2
For
x
=
0
,
y
=
1
⇒
c
=
−
e
x
=
y
3
e
y
−
e
⋅
y
2
x
(
e
)
=
e
3
(
e
e
−
1
)