Q.
If x,∣x+1∣ and ∣x−1∣ are the first three terms of an arithmetic progression, then its sum upto 20 terms is
1833
209
NTA AbhyasNTA Abhyas 2020Sequences and Series
Report Error
Solution:
2∣x+1∣=x+∣x−1∣
(i) Case- I :- x≤−1 2(−x−1)=x+(−x+1)⇒−2x−2=1 ⇒x=−23
Then the A.P. is →−23,21,25...... S20=220[−3+19×2]=220×35=350
(ii) Case- II :- −1≤x<1 2(x+1)=x+(−x+1)⇒2x+2=1⇒x=−21
Then the A.P. is →−21,21,23...... S20=220[−1+19×1]=10×18=180
(ii) Case- III :- x≥1
(not possible)
Hence, the required sum is 350 or 180