Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x=∑n=0∞ cos 2 n θ, y=∑n=0∞ sin 2 n θ z=∑n=0∞ cos 2 n θ sin 2 n θ and 0<θ<(π/2), then
Q. If
x
=
∑
n
=
0
∞
cos
2
n
θ
,
y
=
∑
n
=
0
∞
sin
2
n
θ
z
=
∑
n
=
0
∞
cos
2
n
θ
sin
2
n
θ
and
0
<
θ
<
2
π
, then
2109
213
TS EAMCET 2018
Report Error
A
x
z
+
yz
=
x
y
+
z
B
x
yz
=
yz
+
x
C
x
y
+
z
=
x
y
+
z
x
D
x
+
y
+
z
=
x
yz
+
z
Solution:
∵
x
=
n
=
0
∑
∞
cos
2
n
θ
=
1
−
cos
2
θ
1
=
s
i
n
2
θ
1
{
∵
0
<
θ
<
2
π
}
y
=
n
=
0
∑
∞
sin
2
n
θ
=
1
−
sin
2
θ
1
=
c
o
s
2
θ
1
z
=
n
=
0
∑
∞
cos
2
n
θ
sin
2
n
θ
=
1
−
c
o
s
2
θ
s
i
n
2
θ
1
∴
z
=
1
−
x
y
1
1
⇒
x
yz
−
z
=
x
y
...
(
i
)
∵
x
1
+
y
1
=
sin
2
θ
+
cos
2
θ
=
1
⇒
x
+
y
=
x
y
......
(
ii
)
From Eqs. (i) and (ii),
(
x
+
y
)
z
−
z
=
x
y
⇒
x
z
+
yz
=
x
y
+
z