Q.
If x=sintcos2t and y=costsin2t, then at t=4π, the value of dxdy is equal to:
1807
197
Continuity and Differentiability
Report Error
Solution:
Let x=sintcos2t and y=cost⋅sin2t
Differentiate both w.r.t ' t' dtdx=costcos2t−2sint.sin2t
and dtdy=2costcos2t−sin2t.sint
Now, dxdy=dx/dtdy/dt=cost⋅cos2t−2sint.sin2t2cost.cos2t−sin2t.sint
Put t=4π dxdy=cos4πcos2π−2sin4πsin2π2cos4π.cos2π−sin2πsin4π=−2(21)2−1=21