Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x sin(a+y)=siny, then (dy/dx) is equal to
Q. If
x
s
in
(
a
+
y
)
=
s
in
y
, then
d
x
d
y
is equal to
2119
209
Continuity and Differentiability
Report Error
A
s
in
a
s
i
n
2
(
a
+
y
)
53%
B
s
i
n
2
(
a
+
y
)
s
in
a
19%
C
s
in
a
s
in
(
a
+
y
)
20%
D
s
in
(
a
+
y
)
s
in
a
8%
Solution:
Given
x
s
in
(
a
+
y
)
=
s
in
y
⇒
x
=
s
in
(
a
+
y
)
s
in
y
Differentiate both sides
w
.
r
.
t
.
x
, we get
1
=
s
i
n
2
(
a
+
y
)
s
in
(
a
+
y
)
cos
y
d
x
d
y
−
cos
(
a
+
y
)
s
in
y
d
x
d
y
⇒
s
i
n
2
(
a
+
y
)
=
s
in
(
a
+
y
−
y
)
d
x
d
y
⇒
d
x
d
y
=
s
in
a
s
i
n
2
(
a
+
y
)