xsin3q+ycos3q=sinqcosq ... (i)
and xsinq=ycosq ... (ii)
Equation (i) may be written as xsinq⋅sin2q+ycos3q=sinqcosq ⇒ycosqsin2q+ycos3q=sinqcosq ⇒ycosq(sin2q+cos2q)=sinqcosq ⇒ycosq=sinqcosqy=sinq ... (iii)
Putting the value of y from (iii) in (ii),
we get xsinq=sinq⋅cosq ⇒x=cosq ... (iv)
Squaring (iii) and (iv) and adding,
we get x2+y2=cos2q+sin2q=1 xsinq=sinq.cosq ⇒x=cosq ... (iv)
Squaring (iii) and (iv) and adding, we get x2+y2=cos2q+sin2 q=1