Q.
If x=secθ−cosθ and y=sec3θ−cos3θ, then the value of (dxdy)2 at x=0, is
157
96
Continuity and Differentiability
Report Error
Solution:
We have, x=secθ−cosθ ⇒dθdx=secθ⋅tanθ+sinθ ∴dθdx=tanθ⋅(secθ+cosθ)
Also y=sec3θ−cos3θ ) ⇒dθdy=3sec2θ⋅secθ⋅tanθ+3cos2θ⋅sinθ=3tanθ(sec3θ+cos3θ)
So, (dxdy)2=(dθdxdθdy)2=tan2θ(secθ+cosθ)29tan2θ(sec3θ+cos3θ)2
So, (dxdy)x=02⇒(dxdy)at θ=nπ(n∈I)2=9