Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x satisfies the inequalities x + 7 < 2x + 3 and 2x + 4 < 5x + 3 , then x lies in the interval
Q. If
x
satisfies the inequalities
x
+
7
<
2
x
+
3
and
2
x
+
4
<
5
x
+
3
, then
x
lies in the interval
2403
184
KEAM
KEAM 2013
Linear Inequalities
Report Error
A
(-
∞
,3)
0%
B
(1,3)
20%
C
(4,
∞
)
80%
D
( -
∞
,- l)
0%
E
(3,4)
0%
Solution:
Given,
x
+
7
<
2
x
+
3
⇒
4
≤
x
⇒
x
>
4
…
(
i
)
and
2
x
+
4
<
5
x
+
3
⇒
1
<
3
⇒
x
>
3
1
…
(
ii
)
From Eqs. (i) and (ii), we get the common interval
(
4
,
∞
)
i.e.,
x
∈
(
4
,
∞
)