x=nπ,x=(2n+1)2π,n∈Z
Then, tan−1(cotx)+cot−1(tanx)sin−1(cosx)+cos−1(sinx) =tan−1{tan(2π−x)}+cot−1{cot(2π−x)}sin−1{sin(2π−x)}+cos−1{cos(2π−x)} =(2π−x)+(2π−x)(2π−x)+(2π−x)=(π−2xπ−2x)=1
But from the option we take x=4π =tan−1(cot4π)+cot−1(tan4π)sin−1(cos4π)+cos−1(sin4π) =tan−1(1)+cot−1(1)sin−1(21)+cos−1(21) ⎩⎨⎧sin−1x+cos−1∵tan−1x+cot−1x=2πx=2π⎭⎬⎫ =π/2π/2=1