Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If xm occurs in the expansion of (x + 1/x2)2n, then the coefficient of xm is
Q. If
x
m
occurs in the expansion of
(
x
+
1/
x
2
)
2
n
, then the coefficient of
x
m
is
2580
230
Binomial Theorem
Report Error
A
(
m
)
!
(
2
n
−
m
)
!
(
2
n
)
!
17%
B
(
2
n
−
m
)
!
(
2
n
)
!
3
!
3
!
0%
C
(
3
2
n
−
m
)
!
(
3
4
n
+
m
)
!
(
2
n
)
!
83%
D
none of these
0%
Solution:
T
r
+
1
=
2
n
C
r
x
2
n
−
r
(
x
2
1
)
r
=
2
n
C
r
x
2
n
−
3
r
This contains
x
m
. If
2
n
−
3
r
=
m
,
then
r
=
3
2
n
−
m
⇒
Coefficient of
x
m
=
2
n
C
r
r
=
3
2
n
−
m
=
(
2
n
−
r
)!
r
!
2
n
!
=
(
2
n
−
3
2
n
−
m
)!
(
3
2
n
−
m
)!
2
n
!
=
(
3
4
n
+
m
)!
(
3
2
n
−
m
)!
2
n
!