We have, xlogxdxdy+y=logx2 dxdy+xlogxy=xlogx2logx ⇒dxdy+xlogxy=x2 IF=e∫xlogx1dx=elog(logx) IF=logx
Solution of different equation is ylogx=∫x2logxdx+c ylogx=(logx)2+c
put x=e,y=0 we get 0=1+c⇒c=−1 ∴ylogx=(logx)2−1
put x=e2 yloge2=(loge2)2−1 2y=4−1 ⇒y=23 ∴y(e2)=23